Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
EBioMedicine ; 102: 105076, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38507876

RESUMEN

BACKGROUND: GAA-FGF14 disease/spinocerebellar ataxia 27B is a recently described neurodegenerative disease caused by (GAA)≥250 expansions in the fibroblast growth factor 14 (FGF14) gene, but its phenotypic spectrum, pathogenic threshold, and evidence-based treatability remain to be established. We report on the frequency of FGF14 (GAA)≥250 and (GAA)200-249 expansions in a large cohort of patients with idiopathic downbeat nystagmus (DBN) and their response to 4-aminopyridine. METHODS: Retrospective cohort study of 170 patients with idiopathic DBN, comprising in-depth phenotyping and assessment of 4-aminopyridine treatment response, including re-analysis of placebo-controlled video-oculography treatment response data from a previous randomised double-blind 4-aminopyridine trial. FINDINGS: Frequency of FGF14 (GAA)≥250 expansions was 48% (82/170) in patients with idiopathic DBN. Additional cerebellar ocular motor signs were observed in 100% (82/82) and cerebellar ataxia in 43% (35/82) of patients carrying an FGF14 (GAA)≥250 expansion. FGF14 (GAA)200-249 alleles were enriched in patients with DBN (12%; 20/170) compared to controls (0.87%; 19/2191; OR, 15.20; 95% CI, 7.52-30.80; p < 0.0001). The phenotype of patients carrying a (GAA)200-249 allele closely mirrored that of patients carrying a (GAA)≥250 allele. Patients carrying a (GAA)≥250 or a (GAA)200-249 allele had a significantly greater clinician-reported (80%, 33/41 vs 31%, 5/16; RR, 2.58; 95% CI, 1.23-5.41; Fisher's exact test, p = 0.0011) and self-reported (59%, 32/54 vs 11%, 2/19; RR, 5.63; 95% CI, 1.49-21.27; Fisher's exact test, p = 0.00033) response to 4-aminopyridine treatment compared to patients carrying a (GAA)<200 allele. Placebo-controlled video-oculography data, available for four patients carrying an FGF14 (GAA)≥250 expansion, showed a significant decrease in slow phase velocity of DBN with 4-aminopyridine, but not placebo. INTERPRETATION: This study confirms that FGF14 GAA expansions are a frequent cause of DBN syndromes. It provides preliminary evidence that (GAA)200-249 alleles might be pathogenic. Finally, it provides large real-world and preliminary piloting placebo-controlled evidence for the efficacy of 4-aminopyridine in GAA-FGF14 disease. FUNDING: This work was supported by the Clinician Scientist program "PRECISE.net" funded by the Else Kröner-Fresenius-Stiftung (to CW, AT, and MSy), the grant 779257 "Solve-RD" from the European's Union Horizon 2020 research and innovation program (to MSy), and the grant 01EO 1401 by the German Federal Ministry of Education and Research (BMBF) (to MSt). This work was also supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) N° 441409627, as part of the PROSPAX consortium under the frame of EJP RD, the European Joint Programme on Rare Diseases, under the EJP RD COFUND-EJP N° 825575 (to MSy, BB and-as associated partner-SZ), the NIH National Institute of Neurological Disorders and Stroke (grant 2R01NS072248-11A1 to SZ), the Fondation Groupe Monaco (to BB), and the Montreal General Hospital Foundation (grant PT79418 to BB). The Care4Rare Canada Consortium is funded in part by Genome Canada and the Ontario Genomics Institute (OGI-147 to KMB), the Canadian Institutes of Health Research (CIHR GP1-155867 to KMB), Ontario Research Foundation, Genome Quebec, and the Children's Hospital of Eastern Ontario Foundation. The funders had no role in the conduct of this study.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Enfermedades Neurodegenerativas , Nistagmo Patológico , Niño , Humanos , 4-Aminopiridina/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Nistagmo Patológico/inducido químicamente , Nistagmo Patológico/tratamiento farmacológico , Ontario , Estudios Retrospectivos
2.
EBioMedicine ; 102: 105077, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38513302

RESUMEN

BACKGROUND: An intronic GAA repeat expansion in FGF14 was recently identified as a cause of GAA-FGF14 ataxia. We aimed to characterise the frequency and phenotypic profile of GAA-FGF14 ataxia in a large Chinese ataxia cohort. METHODS: A total of 1216 patients that included 399 typical late-onset cerebellar ataxia (LOCA), 290 early-onset cerebellar ataxia (EOCA), and 527 multiple system atrophy with predominant cerebellar ataxia (MSA-c) were enrolled. Long-range and repeat-primed PCR were performed to screen for GAA expansions in FGF14. Targeted long-read and whole-genome sequencing were performed to determine repeat size and sequence configuration. A multi-modal study including clinical assessment, MRI, and neurofilament light chain was conducted for disease assessment. FINDINGS: 17 GAA-FGF14 positive patients with a (GAA)≥250 expansion (12 patients with a GAA-pure expansion, five patients with a (GAA)≥250-[(GAA)n (GCA)m]z expansion) and two possible patients with biallelic (GAA)202/222 alleles were identified. The clinical phenotypes of the 19 positive and possible positive cases covered LOCA phenotype, EOCA phenotype and MSA-c phenotype. Five of six patients with EOCA phenotype were found to have another genetic disorder. The NfL levels of patients with EOCA and MSA-c phenotypes were significantly higher than patients with LOCA phenotype and age-matched controls (p < 0.001). NfL levels of pre-ataxic GAA-FGF14 positive individuals were lower than pre-ataxic SCA3 (p < 0.001) and similar to controls. INTERPRETATION: The frequency of GAA-FGF14 expansion in a large Chinese LOCA cohort was low (1.3%). Biallelic (GAA)202/222 alleles and co-occurrence with other acquired or hereditary diseases may contribute to phenotypic variation and different progression. FUNDING: This study was funded by the National Key R&D Program of China (2021YFA0805200 to H.J.), the National Natural Science Foundation of China (81974176 and 82171254 to H.J.; 82371272 to Z.C.; 82301628 to L.W.; 82301438 to Z.L.; 82201411 to L.H.), the Innovation Research Group Project of Natural Science Foundation of Hunan Province (2020JJ1008 to H.J.), the Key Research and Development Program of Hunan Province (2020SK2064 to H.J.), the Innovative Research and Development Program of Development and Reform Commission of Hunan Province to H.J., the Natural Science Foundation of Hunan Province (2024JJ3050 to H.J.; 2022JJ20094 and 2021JJ40974 to Z.C.; 2022JJ40783 to L.H.; 2022JJ40703 to Z.L.), the Project Program of National Clinical Research Center for Geriatric Disorders (Xiangya Hospital, 2020LNJJ12 to H.J.), the Central South University Research Programme of Advanced Interdisciplinary Study (2023QYJC010 to H.J.) and the Science and Technology Innovation Program of Hunan Province (2022RC1027 to Z.C.). D.P. holds a Fellowship award from the Canadian Institutes of Health Research (CIHR).


Asunto(s)
Ataxia Cerebelosa , Ataxia de Friedreich , Anciano , Humanos , Canadá , Ataxia Cerebelosa/genética , Estudios de Cohortes , Ataxia de Friedreich/genética , Fenotipo , Expansión de Repetición de Trinucleótido
3.
Cerebellum ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436911

RESUMEN

The complexity in diagnosing hereditary degenerative ataxias lies not only in their rarity, but also in the variety of different genetic conditions that can determine sometimes similar and overlapping clinical findings. In this light, Magnetic Resonance Imaging (MRI) plays a key role in the evaluation of these conditions, being a fundamental diagnostic tool needed not only to exclude other causes determining the observed clinical phenotype, but also to proper guide to an adequate genetic testing. Here, we propose an MRI-based diagnostic algorithm named CHARON (Characterization of Hereditary Ataxias Relying On Neuroimaging), to help in disentangling among the numerous, and apparently very similar, hereditary degenerative ataxias. Being conceived from a neuroradiological standpoint, it is based primarily on an accurate evaluation of the observed MRI findings, with the first and most important being the pattern of cerebellar atrophy. Along with the evaluation of the presence, or absence, of additional signal changes and/or supratentorial involvement, CHARON allows for the identification of a small groups of ataxias sharing similar imaging features. The integration of additional MRI findings, demographic, clinical and laboratory data allow then for the identification of typical, and in some cases pathognomonic, phenotypes of hereditary ataxias.

4.
J Neurol ; 271(5): 2886-2892, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38381176

RESUMEN

OBJECTIVES: The cause of downbeat nystagmus (DBN) remains unknown in a substantial number of patients ("idiopathic"), although intronic GAA expansions in FGF14 have recently been shown to account for almost 50% of yet idiopathic cases. Here, we hypothesized that biallelic RFC1 expansions may also represent a recurrent cause of DBN syndrome. METHODS: We genotyped the RFC1 repeat and performed in-depth phenotyping in 203 patients with DBN, including 65 patients with idiopathic DBN, 102 patients carrying an FGF14 GAA expansion, and 36 patients with presumed secondary DBN. RESULTS: Biallelic RFC1 AAGGG expansions were identified in 15/65 patients with idiopathic DBN (23%). None of the 102 GAA-FGF14-positive patients, but 2/36 (6%) of patients with presumed secondary DBN carried biallelic RFC1 expansions. The DBN syndrome in RFC1-positive patients was characterized by additional cerebellar impairment in 100% (15/15), bilateral vestibulopathy (BVP) in 100% (15/15), and polyneuropathy in 80% (12/15) of cases. Compared to GAA-FGF14-positive and genetically unexplained patients, RFC1-positive patients had significantly more frequent neuropathic features on examination and BVP. Furthermore, vestibular function, as measured by the video head impulse test, was significantly more impaired in RFC1-positive patients. DISCUSSION: Biallelic RFC1 expansions are a common monogenic cause of DBN syndrome.


Asunto(s)
Nistagmo Patológico , Fenotipo , Proteína de Replicación C , Humanos , Proteína de Replicación C/genética , Masculino , Femenino , Persona de Mediana Edad , Adulto , Nistagmo Patológico/genética , Anciano , Expansión de las Repeticiones de ADN/genética , Factores de Crecimiento de Fibroblastos/genética , Adulto Joven , Vestibulopatía Bilateral/genética , Vestibulopatía Bilateral/fisiopatología
5.
medRxiv ; 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38405699

RESUMEN

Background and Objectives: GAA-FGF14 ataxia (SCA27B) is a recently reported late-onset cerebellar ataxia (LOCA) caused by a GAA repeat expansion in intron 1 of the FGF14 gene. Initial studies reviewing MR images of GAA-FGF14 ataxia patients revealed variable degree of cerebellar atrophy in 74-97% of them. A more detailed brain imaging characterization of GAA-FGF14 ataxia is now needed to provide 1) supportive diagnostic features and earlier disease recognition and 2) further information about the pathophysiology of the disease. Methods: We reviewed the brain MRIs of 35 patients (median age at MRI 63 years; range 28-88 years; 16 females) from Quebec (n=27), Nancy (n=3), Perth (n=3) and Bengaluru (n=2) including longitudinal studies for 7 subjects. We performed qualitative analyses to assess the presence and degree of atrophy in vermis, cerebellar hemispheres, brainstem, cerebral hemispheres, and corpus callosum, as well as white matter involvement. Following the identification of the superior cerebellar peduncles involvement, we verified its presence in 54 GAA-FGF14 ataxia patients from four independent cohorts (Tübingen n=29; Donostia n=12; Innsbruck n=7; Cantabria n=6). To assess lobular atrophy, we also performed quantitative cerebellar segmentation in 5 subjects and 5 age-matched controls. Results: Cerebellar atrophy of variable degree was documented in 33 subjects (94.3%); limited to the vermis in 11 subjects, extended to the hemispheres in 22. We observed bilateral involvement of the superior cerebellar peduncles (SCPs) in 22 subjects (62.8%). We confirmed this finding in 30/54 (55.6%) GAA-FGF14 positive subjects from the validation cohorts. Additional findings were: cerebral atrophy in 15 subjects (42.9%), ventricular enlargement in 13 (37.1%), corpus callosum thinning in 7 (20%), and brainstem atrophy in 1 (2.8%). Cerebellar segmentation showed reduced volumes of lobules X and IV in affected individuals. Discussion: Our study confirms that cerebellar atrophy is a key feature of GAA-FGF14 ataxia. The frequent SCP involvement observed in different cohorts may be specific to GAA-FGF14 ataxia, and its detection can support and accelerate the diagnosis. The predominant involvement of vestibulocerebellar lobule X correlates with the finding of downbeat nystagmus frequently observed in GAA-FGF14 ataxia patients.

6.
Clin Transl Med ; 14(1): e1504, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38279833

RESUMEN

Hereditary ataxias, especially when presenting sporadically in adulthood, present a particular diagnostic challenge owing to their great clinical and genetic heterogeneity. Currently, up to 75% of such patients remain without a genetic diagnosis. In an era of emerging disease-modifying gene-stratified therapies, the identification of causative alleles has become increasingly important. Over the past few years, the implementation of advanced bioinformatics tools and long-read sequencing has allowed the identification of a number of novel repeat expansion disorders, such as the recently described spinocerebellar ataxia 27B (SCA27B) caused by a (GAA)•(TTC) repeat expansion in intron 1 of the fibroblast growth factor 14 (FGF14) gene. SCA27B is rapidly gaining recognition as one of the most common forms of adult-onset hereditary ataxia, with several studies showing that it accounts for a substantial number (9-61%) of previously undiagnosed cases from different cohorts. First natural history studies and multiple reports have already outlined the progression and core phenotype of this novel disease, which consists of a late-onset slowly progressive pan-cerebellar syndrome that is frequently associated with cerebellar oculomotor signs, such as downbeat nystagmus, and episodic symptoms. Furthermore, preliminary studies in patients with SCA27B have shown promising symptomatic benefits of 4-aminopyridine, an already marketed drug. This review describes the current knowledge of the genetic and molecular basis, epidemiology, clinical features and prospective treatment strategies in SCA27B.


Asunto(s)
Ataxias Espinocerebelosas , Adulto , Humanos , Ataxias Espinocerebelosas/diagnóstico , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/genética , Ataxia/complicaciones , Fenotipo
7.
J Neurol ; 271(4): 2078-2085, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38263489

RESUMEN

BACKGROUND: Whether spinocerebellar ataxia 27B (SCA27B) may present as a cerebellar multiple system atrophy (MSA-C) mimic remains undetermined. OBJECTIVES: To assess the prevalence of FGF14 (GAA)≥250 expansions in patients with MSA-C, to compare SCA27B and MSA-C clinical presentation and natural history. METHODS: FGF14 expansion screening combined with longitudinal deep-phenotyping in a prospective cohort of 195 patients with sporadic late-onset cerebellar ataxia. RESULTS: After a mean disease duration of 6.4 years, 111 patients were not meeting criteria for MSA-C while 24 and 60 patients had a final diagnosis of possible and probable MSA-C, respectively. 16 patients carried an FGF14 (GAA)≥250 expansion in the group not meeting MSA-C criteria (14.4%), 3 patients in the possible MSA-C group (12.5%), but none among probable MSA-C cases. SCA27B patients were evolving more slowly than probable MSA-C patients. CONCLUSIONS: FGF14 (GAA)≥250 expansion may account for MSA look-alike cases and should be screened among slow progressors.


Asunto(s)
Atrofia de Múltiples Sistemas , Ataxias Espinocerebelosas , Degeneraciones Espinocerebelosas , Humanos , Atrofia de Múltiples Sistemas/diagnóstico , Estudios Prospectivos , Ataxias Espinocerebelosas/diagnóstico , Cerebelo , Degeneraciones Espinocerebelosas/diagnóstico
8.
Clin Genet ; 105(4): 446-452, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38221848

RESUMEN

A pathogenic GAA repeat expansion in the first intron of the fibroblast growth factor 14 gene (FGF14) has been recently identified as the cause of spinocerebellar ataxia 27B (SCA27B). We herein screened 160 Greek index cases with late-onset cerebellar ataxia (LOCA) for FGF14 repeat expansions using a combination of long-range PCR and bidirectional repeat-primed PCRs. We identified 19 index cases (12%) carrying a pathogenic FGF14 GAA expansion, a diagnostic yield higher than that of previously screened repeat-expansion ataxias in Greek LOCA patients. The age at onset of SCA27B patients was 60.5 ± 12.3 years (range, 34-80). Episodic onset (37%), downbeat nystagmus (32%) and vertigo (26%) were significantly more frequent in FGF14 expansion-positive cases compared to expansion-negative cases. Beyond typical cerebellar signs, SCA27B patients often displayed hyperreflexia (47%) and reduced vibration sense in the lower extremities (42%). The frequency and phenotypic profile of SCA27B in Greek patients was similar to most other previously studied populations. We conclude that FGF14 GAA repeat expansions are the commonest known genetic cause of LOCA in the Greek population and recommend prioritizing testing for FGF14 expansions in the diagnostic algorithm of patients with LOCA.


Asunto(s)
Ataxia Cerebelosa , Ataxias Espinocerebelosas , Degeneraciones Espinocerebelosas , Humanos , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/genética , Grecia/epidemiología , Ataxias Espinocerebelosas/genética , Degeneraciones Espinocerebelosas/genética , Fenotipo , Expansión de Repetición de Trinucleótido/genética
9.
Cerebellum ; 23(2): 489-501, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37101017

RESUMEN

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a neurologic disorder with generally well-known clinical manifestations. However, few studies assessed their progression rate using a longitudinal design. This study aimed to document the natural history of ARSACS over a 4-year period in terms of upper and lower limb functions, balance, walking capacity, performance in daily living activities, and disease severity. Forty participants were assessed on three occasions over 4 years. Participant performance was reported in raw data as well as in percentage from reference values to consider the normal aging process. Severe balance and walking capacity impairments were found, with a significant performance decrease over the 4 years. Balance reached a floor score of around 6 points on the Berg Balance Scale for participants aged >40 years, while other participants lost about 1.5 points per year. The mean loss in walking speed was 0.044 m/s per year and the mean decrease in the distance walked in 6 min was 20.8 m per year for the whole cohort. Pinch strength, balance, walking speed, and walking distance decreased over time even when reported in percentage from reference values. Major impairments and rapid progression rates were documented in the present study for upper limb coordination, pinch strength, balance, and walking capacity in the ARSACS population. A progression rate beyond the normal aging process was observed. These results provide fundamental insights regarding the disease prognosis that will help to better inform patients, develop specific rehabilitation programs, and improve trial readiness.


Asunto(s)
Ataxia Cerebelosa , Discapacidad Intelectual , Atrofia Óptica , Ataxias Espinocerebelosas , Humanos , Estudios Longitudinales , Ataxias Espinocerebelosas/genética , Espasticidad Muscular , Ataxia
10.
Cerebellum ; 23(2): 512-522, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37165279

RESUMEN

Autosomal recessive cerebellar ataxias (ARCAs) are inherited neurological disorders that can affect both the central and peripheral nervous systems. To assess the effects of interventions according to the perception of people affected, patient-reported outcome measures (PROMs) must be available. This paper presents the development process of the Person-Reported Ataxia Impact Scale (PRAIS), a new PROM in recessive ataxias, and the documentation of its content validity, interpretability, and construct validity (structural and discriminant). The development followed the PROMIS framework and the Food and Drug Administration guidelines. A mixed-method study design was used to develop the PROM. A systematic review of the literature, semistructured interviews, and discussion groups was conducted to constitute an item pool. Experts' consultation helped formulate items, and the questionnaire was sent online to be completed by people affected. Statistical analyses were performed to assess the structural and discriminant validity. A total of 125 people affected by recessive ataxia completed the questionnaire. The factor analysis confirmed the three components: physical functions and activities, mental functions, and social functions. The statistical analysis showed that it can discriminate between stages of mobility and level of autonomy. It showed very good levels of internal consistency (0.79 to 0.89). The Person-Reported Ataxia Impact Scale (PRAIS) is a 38-item questionnaire that assesses the manifestations and impacts of the disease according to the perception of people affected by recessive ataxia. It can be used in clinical and research settings.


Asunto(s)
Ataxia Cerebelosa , Humanos , Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/genética , Medición de Resultados Informados por el Paciente , Encuestas y Cuestionarios
11.
J Neurol Neurosurg Psychiatry ; 95(2): 175-179, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399286

RESUMEN

BACKGROUND: Intronic GAA repeat expansions in the fibroblast growth factor 14 gene (FGF14) have recently been identified as a common cause of ataxia with potential phenotypic overlap with RFC1-related cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS). Our objective was to report on the frequency of intronic FGF14 GAA repeat expansions in patients with an unexplained CANVAS-like phenotype. METHODS: We recruited 45 patients negative for biallelic RFC1 repeat expansions with a combination of cerebellar ataxia plus peripheral neuropathy and/or bilateral vestibulopathy (BVP), and genotyped the FGF14 repeat locus. Phenotypic features of GAA-FGF14-positive versus GAA-FGF14-negative patients were compared. RESULTS: Frequency of FGF14 GAA repeat expansions was 38% (17/45) in the entire cohort, 38% (5/13) in the subgroup with cerebellar ataxia plus polyneuropathy, 43% (9/21) in the subgroup with cerebellar ataxia plus BVP and 27% (3/11) in patients with all three features. BVP was observed in 75% (12/16) of GAA-FGF14-positive patients. Polyneuropathy was at most mild and of mixed sensorimotor type in six of eight GAA-FGF14-positive patients. Family history of ataxia (59% vs 15%; p=0.007) was significantly more frequent and permanent cerebellar dysarthria (12% vs 54%; p=0.009) significantly less frequent in GAA-FGF14-positive than in GAA-FGF14-negative patients. Age at onset was inversely correlated to the size of the repeat expansion (Pearson's r, -0.67; R2=0.45; p=0.0031). CONCLUSIONS: GAA-FGF14-related disease is a common cause of cerebellar ataxia with polyneuropathy and/or BVP, and should be included in the differential diagnosis of RFC1 CANVAS and disease spectrum.


Asunto(s)
Vestibulopatía Bilateral , Ataxia Cerebelosa , Enfermedades del Sistema Nervioso Periférico , Polineuropatías , Enfermedades Vestibulares , Humanos , Ataxia/genética , Vestibulopatía Bilateral/genética , Vestibulopatía Bilateral/diagnóstico , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/diagnóstico , Síndrome
12.
Cerebellum ; 23(2): 757-774, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37155088

RESUMEN

The association of cerebellar ataxia and hypogonadism occurs in a heterogeneous group of disorders, caused by different genetic mutations often associated with a recessive inheritance. In these patients, magnetic resonance imaging (MRI) plays a pivotal role in the diagnostic workflow, with a variable involvement of the cerebellar cortex, alone or in combination with other brain structures. Neuroimaging involvement of the pituitary gland is also variable. Here, we provide an overview of the main clinical and conventional brain and pituitary gland MRI imaging findings of the most common genetic mutations associated with the clinical phenotype of ataxia and hypogonadism, with the aim of helping neuroradiologists in the identification of these disorders.


Asunto(s)
Ataxia Cerebelosa , Hipogonadismo , Humanos , Ataxia Cerebelosa/diagnóstico por imagen , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/complicaciones , Hipogonadismo/diagnóstico por imagen , Hipogonadismo/genética , Encéfalo/diagnóstico por imagen , Hipófisis/diagnóstico por imagen , Imagen por Resonancia Magnética
13.
EBioMedicine ; 99: 104931, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38150853

RESUMEN

BACKGROUND: SCA27B caused by FGF14 intronic heterozygous GAA expansions with at least 250 repeats accounts for 10-60% of cases with unresolved cerebellar ataxia. We aimed to assess the size and frequency of FGF14 expanded alleles in individuals with cerebellar ataxia as compared with controls and to characterize genetic and clinical variability. METHODS: We sized this repeat in 1876 individuals from France sampled for research purposes in this cross-sectional study: 845 index cases with cerebellar ataxia and 324 affected relatives, 475 controls, as well as 119 cases with spastic paraplegia, and 113 with familial essential tremor. FINDINGS: A higher frequency of expanded allele carriers in index cases with ataxia was significant only above 300 GAA repeats (10.1%, n = 85) compared with controls (1.1%, n = 5) (p < 0.0001) whereas GAA250-299 alleles were detected in 1.7% of both groups. Eight of 14 index cases with GAA250-299 repeats had other causal pathogenic variants (4/14) and/or discordance of co-segregation (5/14), arguing against GAA causality. We compared the clinical signs in 127 GAA≥300 carriers to cases with non-expanded GAA ataxia resulting in defining a key phenotype triad: onset after 45 years, downbeat nystagmus, episodic ataxic features including diplopia; and a frequent absence of dysarthria. All maternally transmitted alleles above 100 GAA were unstable with a median expansion of +18 repeats per generation (r2 = 0.44; p < 0.0001). In comparison, paternally transmitted alleles above 100 GAA mostly decreased in size (-15 GAA (r2 = 0.63; p < 0.0001)), resulting in the transmission bias observed in SCA27B pedigrees. INTERPRETATION: SCA27B diagnosis must consider both the phenotype and GAA expansion size. In carriers of GAA250-299 repeats, the absence of documented familial transmission and a presentation deviating from the key SCA27B phenotype, should prompt the search for an alternative cause. Affected fathers have a reduced risk of having affected children, which has potential implications for genetic counseling. FUNDING: This work was supported by the Fondation pour la Recherche Médicale, grant number 13338 to JLM, the Association Connaître les Syndrome Cérébelleux - France (to GS) and by the European Union's Horizon 2020 research and innovation program under grant agreement No 779257 ("SOLVE-RD" to GS). DP holds a Fellowship award from the Canadian Institutes of Health Research (CIHR). SK received a grant (01GM1905C) from the Federal Ministry of Education and Research, Germany, through the TreatHSP network. This work was supported by the Australian Government National Health and Medical Research Council grants (GNT2001513 and MRFF2007677) to MB and PJL.


Asunto(s)
Ataxia Cerebelosa , Ataxia de Friedreich , Niño , Humanos , Ataxia/diagnóstico , Ataxia/genética , Australia , Canadá , Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/genética , Estudios Transversales , Ataxia de Friedreich/genética
14.
Cerebellum ; 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38133849

RESUMEN

Mobility limitations, including a decrease in walking speed, are major issues for people with autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). Improving our understanding of factors influencing walking speed in ARSACS may inform the development of future interventions for gait rehabilitation and contribute to better clinical practices. The objective of the study was to identify the factors influencing the self-selected walking speed in adults with ARSACS. The dependent variable of this cross-sectional study was the self-selected speed and the factors (independent variables) were age, sex, balance, balance confidence, knee flexion and extension cocontraction indexes, lower limb coordination, passive range of motion of ankle dorsiflexion, knee and hip extension, and global spasticity. Multiple regression models were used to assess the relationships between walking speed and each factor individually. Six factors were significantly associated with walking speed and thus included in regression models. The models explained between 42.4 and 66.5% of the total variance of the self-selected walking speed. The factors that most influence self-selected walking speed are balance and lower limb coordination. In order of importance, the other factors that also significantly influence self-selected walking speed are ankle dorsiflexion range of motion, lower limb spasticity, knee extension range of motion, and confidence in balance. Balance and lower limb coordination should be targeted in rehabilitation interventions to maintain walking ability and functional independence as long as possible. The six factors identified should also be included in future studies to deepen our understanding of walking speed.

15.
Neuromuscul Disord ; 33(11): 856-865, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37923656

RESUMEN

Oculopharyngeal muscular dystrophy (OPMD) is a rare late-onset muscle disease associated with progressive dysphagia. As there was no patient-reported outcome measure specific for the assessment of dysphagia in OPMD, the Dysphagiameter was developed. The Food and Drug Administration guidance was followed. In Phase 1, a systematic literature review and an expert consultation were conducted to identify the concepts of interest. It was decided that the instrument should assess difficulty swallowing using pictures of foods of various textures (part A) and impact of dysphagia on activities and participation (part B), as defined by the International Classification of Functioning, Disability and Health. In Phase 2, focus groups (n = 3) and online surveys (n = 55) were conducted to generate the items. Then, the food items for part A were selected and grouped into 17 textures by a panel of registered dietitians. Cognitive interviews were conducted (n = 23) to refine the instrument and assess its clarity and comprehensiveness. The final draft included 82 food items assessing the capacity to swallow foods and drinks (part A) and 10 items assessing the impact of dysphagia on activities and participation (part B). Item reduction and assessment of psychometrics properties, using Rasch analysis, are ongoing as part of Phase 3.


Asunto(s)
Trastornos de Deglución , Distrofia Muscular Oculofaríngea , Humanos , Trastornos de Deglución/etiología , Trastornos de Deglución/complicaciones , Distrofia Muscular Oculofaríngea/complicaciones , Distrofia Muscular Oculofaríngea/diagnóstico , Medición de Resultados Informados por el Paciente , Psicometría , Encuestas y Cuestionarios , Revisiones Sistemáticas como Asunto
16.
Neuromuscul Disord ; 33(11): 824-834, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37926637

RESUMEN

Oculopharyngeal muscular dystrophy (OPMD) is a rare, primarily autosomal dominant, late onset muscular dystrophy commonly presenting with ptosis, dysphagia, and subsequent weakness of proximal muscles. Although OPMD diagnosis can be confirmed with high confidence by genetic testing, the slow progression of OPMD poses a significant challenge to clinical monitoring and a barrier to assessing the efficacy of treatments during clinical trials. Accordingly, there is a pressing need for more sensitive measures of OPMD progression, particularly those which do not require a muscle biopsy. This review provides an overview of progress in OPMD biomarkers from clinical assessment, quantitative imaging, histological assessments, and genomics, as well as hypothesis-generating "omics" approaches. The ongoing search for biomarkers relevant to OPMD progression needs an integrative, longitudinal approach combining validated and experimental approaches which may include clinical, imaging, demographic, and biochemical assessment methods. A multi-omics approach to biochemical biomarker discovery could help provide context for differences found between individuals with varying levels of disease activity and provide insight into pathomechanisms and prognosis of OPMD.


Asunto(s)
Blefaroptosis , Trastornos de Deglución , Distrofia Muscular Oculofaríngea , Humanos , Distrofia Muscular Oculofaríngea/genética , Biomarcadores , Blefaroptosis/genética , Pruebas Genéticas
17.
Muscle Nerve ; 68(6): 841-849, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37849345

RESUMEN

INTRODUCTION/AIMS: Muscle weakness, and its association with mobility limitations, has received little study in oculopharyngeal muscular dystrophy (OPMD) using quantitative and standardized assessments. The objectives of this study were to (1) document upper and lower limb muscle strength, upper limb functions, fatigue, and mobility capacities; (2) compare them with reference values and across participant age groups; and (3) explore associations between muscle strength, fatigue, and mobility capacities among adults with OPMD. METHODS: Thirty-four participants were included in this cross-sectional study. The following variables were assessed: quantitative maximal isometric muscle strength, grip and pinch strength, fatigue, walking speed, walking endurance, sit-to-stand, and stair ascent and descent capacities. RESULTS: Muscle strength was lower for older than younger participants for five muscle groups (P < .05). Walking endurance, sit-to-stand, stairs (ascent and descent), and strength of hip flexion, grip, and pinch were below 80% of reference values in participants ≥56 y old (55.3%-78.2%). Moderate to strong correlations were found between muscle strength and mobility capacities (ρ = 0.42-0.80, P < .05), and between fatigue and either muscle strength or mobility capacities (ρ = 0.42-0.75, P < .05). DISCUSSION: This study highlights the impact of OPMD on strength, endurance, and functional capacity, among others, with patients being well below reference values even before the age of 65 y. In addition to helping health professionals to offer better clinical guidance, these results will improve clinical trial readiness. The next steps will be to assess the metrological properties of outcome measures and continue to document the disease progression rate.


Asunto(s)
Distrofia Muscular Oculofaríngea , Adulto , Humanos , Estudios Transversales , Fuerza Muscular/fisiología , Caminata/fisiología , Fatiga
18.
Brain Commun ; 5(5): fcad239, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37705681

RESUMEN

Ashton C et al report a retrospective multi-centre cohort of 34 patients from Canada, France, Austria and Australia with spinocerebellar ataxia 27B, describing the common feature of episodic ataxia and other episodic features, as well as the inefficacy of acetazolamide in these patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...